Philosophische Logik: Grundgesetze und Methoden der Logik  | ISBN: 9783734776274
Philosophische Logik: Grundgesetze und Methoden der Logik | ISBN: 9783734776274

Reinhard Gobrecht  

Grundgesetze und Methoden der Logik:

Verlag: BoD - Books on Demand, Norderstedt 2021

364 Seiten,  Preis: 26,00 €, 2. Auflage

ISBN: 978-3-73477627-4 

 

Philosophische Logik und mathematische Logik 

Inhaltsbeschreibung:

Sowohl ein Philosophiebuch der Logik als auch ein Mathematikbuch der Logik, auf systematische Weise geordnet.
Grundgesetze und Methoden der Logik finden nicht nur Anwendung in der Mathematik und Philosophie, sondern außerdem auch in vielen anderen Wissenschaften.

Das Buch Grundgesetze und Methoden der Logik umfasst:

(1) begrifflich relevante Punkte (dazu gehören z. B. Aussagen, Begriffe, Definitionen, Urteile und Schlüsse),

(2) axiomatisch relevante Punkte (dazu gehören z. B. Tautologien, notwendige Wahrheiten, absolut erste Wahrheiten, der Satz von allem und keinem) und

(3) methodisch relevante Punkte (dazu gehören z. B. die Wahrheitstafelmethode, das Zirkelfehlerprinzip, mehrere Substitutionsprinzipien, der Schluss auf die beste Erklärung). 

Bei allen logischen Gesetzen und Methoden, die neben der logischen Bedeutung auch eine ontologische Bedeutung haben, werden beide Bedeutungen angegeben. Das Buch enthält also Logik und Metaphysik der Logik. Im Text befinden sich zahlreiche Zitate von Philosophen direkt integriert, die die Tragweite und die Historie der logischen Grundgesetze beschreiben. Zu allen Grundgesetzen und Methoden sind Beispiele und Anwendungen angeführt. Insgesamt sind in diesem Buch über 100 Grundgesetze (Prinzipien) der Logik auf ausführliche Weise zusammengestellt.     

 

Belegstellen von folgenden Philosophen:

Al-Farabi – Albert – Albertus Magnus –  Anselm von Canterbury – Aristoteles – Bacon - Baumgarten – Bolzano – Giordano Bruno - Carnap – Cicero - Descartes – Davidson – Einstein – Epikur - Euklid – Frege – Hegel – Heidegger – Hume – Kant - Kripke - Leibniz – Locke - Lotze - Lukrez – Mach - Mill – Moore – Nikolaus von Kues – Ockham – Parmenides - Pascal – Peirce – Platon – Plotin – Poincaré - Popper – Quine – Russell – Schlick – Sextus Empiricus - Spinoza – Theophrast – Thomas von Aquin – Whitehead – Wittgenstein – Wolff – Wright – Wundt – u. a.

 

Bezug zu folgenden Mathematikern und Logikern:

Archimedes - Bochenski - Bolzano - Cantor - Carnap - Copi - Dedekind - Dirichlet - Euklid - Euler- Fibonacci - Frege - Gödel - Grandi - Laplace - Leibniz - Lotze - Mates - Nikolaus von Kues - Pascal - Peano - Prior - Quine - Russell - Tarski - Whitehead -Wittgenstein - u. a.

 

Beispiele von Themen des Buches: 

  1. Logik, Metaphysik der Logik, Philosophie der Logik, Erkenntnistheorie zur Logik 
  2. Aussagen- und Prädikatenlogik (Aristoteles, Frege, Wittgenstein)
  3. Mathematische Logik und Philosophische Logik
  4. Seinsgesetze und logische Gesetze
  5. Logische Bedeutungen und Ontologische Bedeutungen
  6. Modalitäten von Sein und Logik
  7. Archimedische Punkte und Agrippa Trilemma
  8. Axiome des Euklid
  9. Substitutionsprinzipien
  10. Wahrheit und Rechtheit
  11. Verstandes- und Vernunftschlüsse
  12. Empirische Schlüsse (Induktion und Analogie, etc.)
  13. Syntaktisches und Semantisches
  14. Modallogik, Glaubenslogik, Gebots- und Sollenslogik, Zeitlogik
  15. Eigenschaften von Systemen und Theorien
  16. Existenz- und Universalsätze auf logischer Eben und Seinsebene.   
  17. Unendlichkeit und Regress
  18. Wahrscheinlichkeit und Kontinuität
  19. Beweisführung, Definierbarkeit und Intersubjektivität 
  20. Verifizierbarkeit und Falsifizierbarkeit
  21. Zirkelfehler und petitio principii
  22. Extension und Intension von Begriffen, Begriffsanalyse und Begriffskonflikte
  23. Apagoge, Abduktion und Syllogismen
  24. Wahrheitsübertragung und Wahrheitstafeln, Unterscheidung von Wahrheiten
  25. Ökonomie der Logik (Ockham) 

Fragen, die das Buch beantwortet:

Was ist ein Widerspruch? - Was bedeutet Wahrscheinlichkeit? - Was ist eine empirische Verallgemeinerung? - 

Was ist logische und ontologische Wahrheit? - Was bedeutet Falsifikation? - Warum funktioniert der Modus Ponens? -  

Wie funktioniert das Schubfachprinzip? - Warum führen illegitime Gesamtheiten zu Paradoxien? -

Was ist ein Urteil? - Was bedeutet eine hypothetische Abschwächung? - Was ist ein Syllogismus? -

Was besagt der Satz von allem und keinem? -  Was bedeutet Unendlichkeit? - Was ist ein Analogieschluss? -

Wie sehen zeitliche Modalitäten aus? - Wie funktioniert ein Schluss auf die beste Erklärung? -

u. v. a.

 


Philosophische Logik | Flyer Grundgesetze und Methoden der Logik
Philosophische Logik | Flyer Grundgesetze und Methoden der Logik



Abbildungen zur Logik der Philosophie und Mathematik aus dem Buch: Grundgesetze und Methoden der Logik

  1. Ableitung im Kalkül des natürlichen Schließens (Aussagenlogik)
  2. Beweisaufbau nach Aristoteles
  3. Diagramm der Modalitäten
  4. Skeptische Argumente (Sextus Empiricus)
  5. Beispiel eines Syllogismus (Aristotelische Syllogistik)
  6. Tautologien der Aussagenlogik
  7. Wahrheitstafelmethode (Wittgenstein)
  8. Wesen der Implikation (Frege)
  9. Temporale Operatoren einer Zeitlogik
  10. Satz von allem und keinem (Prädikatenlogik)

Philosophische Logik: Coverbild: Grundgesetze und Methoden der Logik
Philosophische Logik: Coverbild: Grundgesetze und Methoden der Logik

Philosophische Logik

Logik der Philosophie

Philosophie der Logik

Metaphysik der Logik

 

Mathematische Logik

Logik der Mathematik

 

Grundgesetze der Logik

Methoden der Logik

 

Aussagenlogik

Prädikatenlogik

Modallogik

Zeitlogik


Philosophische Logik: Unterschiede und Zusammenhänge zwischen Mathematik, Logik und Philosophie

Man kann sich fragen, wie sich Mathematik, Logik und Philosophie unterscheiden, aber auch, was sie gemeinsam haben. Die Unterschiede beruhen einerseits natürlich auf den Gegenständen, die in beiden Disziplinen zu Grunde liegen. Andererseits gibt es jedoch auch Unterschiede im Vernunftgebrauch, d. h., man hat wesentliche Unterschiede zwischen mathematischer Vernunft­erkenntnis und philosophischer Vernunfterkenntnis hinsichtlich der jeweiligen Methodik. Darüber hinaus unterscheiden sich mathe­matische und logische Begriffe von den philosophischen Begriffen durch ihre größere Präzision und Einheitlichkeit. Der Mathematik, Logik und Philosophie gemeinsam ist die Vernunfterkenntnis. Mathematische Logik und Philosophische Logik haben sehr viel gemeinsam:

 

(1)   Sowohl die Mathematik als auch die Philosophie bedienen sich der Vernunfterkenntnis.

(2)   Philosophische Logik und Mathematische Logik bedienen sich der analytischen Methode und der Deduktion.

(3)  Es gibt Unterschiede in den Gegenständen der Mathematik und der Philosophie. Der mathematische Bereich ist konzentriert auf Quantität und Relation, der philosophische Bereich umfasst auch Qualität. Der logische Bereich beinhaltet viele Gemeinsamkeiten zwischen Mathematik und Philosophie. Die Philosophische Logik umfasst zusätzliche empirische Schlussweisen, im Gegensatz zur Mathematischen Logik.

(4) Die mathematische Begrifflichkeit ist einheitlich und präzise und hängt nicht vom Mathematiker ab, die philosophische Begrifflichkeit ist uneinheitlich und weniger präzise und hängt vom Philosophen ab.

(5) Mathematische Vernunfterkenntnis ist intuitiv und diskursiv, die philosophische Vernunfterkenntnis ist fast ausschließlich diskursiv.

(6) Mathematische Vernunfterkenntnis konstruiert, veranschaulicht und symbolisiert ihre Begriffe (Kreis, Quadrat, Unendlichkeit, Konvergenz, Stetigkeit, etc.); philosophische Vernunfterkenn­tnis geschieht eher mit reinen Begriffen ohne einen direkten Bezug zur Anschauung (Existenz, Ursache, Sein, Werden, etc.).

(7) Mathematische Vernunfterkenntnis erschließt notwendige Wahr­heiten, mathematische Beweise geschehen mit Notwendigkeit. Philosophische Vernunfterkenntnis benutzt auch empirische Schlussweisen wie Induktion und Analogie und muss unterscheiden zwischen allen Modalitäten.

 

Weiterführende Literatur: Kant: Kritik der reinen Vernunft B 741- B 766

 


Wissenschaft braucht Logik und Methode.


 

Inhaltsverzeichnis und Einführung ansehen, im Buch probelesen: